— МОРСКАЯ БИОЛОГИЯ —

УДК 593.66

РАСПРЕДЕЛЕНИЕ СКЛЕРАКТИНИЕВЫХ КОРАЛЛОВ, НАСЕЛЯЮЩИХ ГЛУБИНЫ СВЫШЕ 1000 м В ТИХОМ ОКЕАНЕ

© 2022 г. Н. Б. Келлер^{1, *}, Н. С. Оськина^{1, **}, Д. М. Ольшанецкий^{2, ***}, Ю. А. Зарайская^{2, ****}

¹Институт океанологии им. П.П. Ширшова РАН, Москва, Россия ²Геологический Институт РАН, Москва, Россия *e-mail: keller@ocean.ru **e-mail: nsoskina@mail.ru ***e-mail: mitia@list.ru ***e-mail: yulya.zarayskaya@gmail.com Поступила в редакцию 12.02.2019 г. После доработки 19.02.2020 г. Принята к публикации 25.02.2022 г.

Анализ собственных и литературных данных по видовому разнообразию склерактиниевых кораллов Тихого океана позволил сравнить их распространение в свете прежде не учитывавнегося фактора — наличия глобального океанического конвейера поверхностных и глубинных течений, являющегося естественным барьером для распространения личинок полипов. Показано, что батиальные кораллы предпочитают западные акватории Тихого океана восточным и что в их распределении существует четкая меридиональная асимметрия. На абиссальных глубинах такая закономерность не наблюдается. Так же показано, что сообщества кораллов, населяющие глубины 1000–2000 м, древнее, чем абиссальная фауна склерактиний, что служит дополнительным аргументом в пользу ранее предложенной гипотезы опроисхождении абиссальных видов *Fungiacyatus marenzelleri* и *Leptopenus discus* от бесскелетных предков.

Ключевые слова: склерактиниевые кораллы, Тихий океан, глобальный конвейер **DOI:** 10.31857/S0030157422060053

введение

Изучение глубоководных склерактиниевых кораллов в океане началось еще в XVIII веке. Библиография по разным аспектам их исследований включает сотни публикаций, в которых описываются отдельные виды кораллов из разных регионов Мирового океана, в основном, из области шельфа и верхней батиали. К настоящему времени известны более 1000 видов этих организмов. Полная ревизия глубоководных склерактиний на видовом уровне была проведена трудами двух ученых – Стефана Кернса [10-18] и Хельмута Зибровиуса [29]. Однако эти исследователи, сделавшие упор на описание и ревизию видов, не создали единых карт географического распространения этих животных по всему Мировому океану по разным диапазонам глубин.

Изучение мелководных одиночных кораллов проще, чем глубоководных, которое затруднено из-за редкости их поселений на океанических просторах. Однако за более чем 200 лет многими экспедициями, среди которых существенная роль принадлежит российским, был собран представительный материал по склерактиниям. На его основе мы провели пространственное исследование, чтобы выявить особенности их распространения по регионам и глубинам. Кроме того, нас интересовало распределение поселений кораллов относительно расположения петель глобального океанского конвейера. Существование конвейера, объединяющего несколько поверхностных и глубинных течений, было доказано относительно недавно, и его роль в развитии глубинной океанской биоты пока только изучается [5, 7, 8].

МАТЕРИАЛЫ И МЕТОДЫ

В основу нашей работы был положен как материал, собранный в экспедициях Института океанологии РАН и обработанный Н.Б Келлер [1–4], так и постанционные списки видов, приведенные в многочисленных зарубежных статьях и монографиях [10–24, 29]. Таксономическое положение видов определялось согласно ревизованной Зибровиусом и Кернсом систематике склерактиний [10–17, 26, 28, 29]. При этом мы использова-

Глубина, м	Число станций		Число видов		Число родов	
1000-2000	27	298	29	80	16	37
2000-3000	5	20	5	16	4	10
3000-4000	6	11	5	8	4	3
4000-5000	27	31	5	3	3	3

Таблица 1. Число видов и родов склерактиниевых кораллов по интервалам глубин (первые число – наши данные, вторые числа *курсивом* – литературные данные)

ли сведения о находках видов, не рассматривая число экземпляров, поскольку они приводятся не в каждой работе и могут вызвать неправильную интерпретацию.

В результате были составлены списки видов, встреченных в выбранных нами определенных интервалах глубин, в каждом из которых присутствует десятки видов примерно с 400 станций (табл. 1).

РЕЗУЛЬТАТЫ

По данным наших сборов была составлена карта станций (рис. 1), на которых были обнаружены склерактинии, обитающие в Тихом океане в диапазоне глубин от 1000 до 2000 м (табл. 2). Оказалось, что 20 таких станций сконцентрированы в западной части Пацифики и только 2 встречены в ее восточной части у побережья северной Америки. Две петли глубоководного конвейера охарактеризованы находками кораллов, тогда как две других петли конвейера, расположенные в более высоких широтах южной Пацифики, практически лишены таких находок.

По литературным свидетельствам в этом диапазоне глубин обнаружено еще 80 видов, поднятых с 298 станций (табл. 1). Вместе с нашими находками мы получили аналогичную, но более четкую и выразительную картину приуроченности кораллов к западному сектору Тихого океана. Наибольшее число видов этих животных обитает между 30° с. ш. и 50° ю. ш. в пределах центральной части петли конвейера, образованной поверхностной и придонной его частями и в азиатском регионе. В верхней северной петле конвейера встречено всего 6 станций с видами кораллов. В южной части океана внутри двух петель конвейера, верхняя из которых образована его глубинной частью, находки склерактиний отсутствуют (рис. 2). Отмеченная здесь приуроченность глубоководных кораллов к западной части океана были описаны нами ранее [3, 4] и для мелководных кораллов. Был сделан вывод, что в западной части Тихого океана тропического и субтропического поясов зафиксировано наибольшее число видов и экземпляров мелководных склерактиний, особенно в районе Индо-Малайского архипелага и у Филиппин.

Подобная закономерность прослеживается и на глубине 2000–3000 м (за исключением двух станций в районе Перуано-Чилийского желоба). С 18 станций поднято 16 видов кораллов, два из которых принадлежат роду *Fungiacyathus*, два роду *Stephanocyathus*, пять роду *Caryophyllia*, по одному родам *Crispatotrochus*, *Paracyathus*, *Madrepora*, *Deltocyathus* и *Enallopsammia*, два роду *Flabellum* (табл. 3). В западных частях океана сосредоточена основная масса кораллов (рис. 3).

В глубинном интервале 3000—4000 м, т е в переходной к абиссали зоне (табл. 4), было обнаружено 11 станций (табл. 1), с которых поднято всего 8 видов склерактиний, три из которых принадлежит роду *Fungiacyathus*, два — роду *Leptopenus*, два — роду *Deltocyathus* и один — роду *Flabellum*. Вне петли конвейера в северной Пацифике единичные находки приурочены к азиатскому побережью и к западному побережью северной Америки. Отмечены немногочисленные станции с кораллами вдоль побережья Южной Америки. Внутри большей петли конвейера найдены всего 2 станции (рис. 4, 5).

В нашей статье [7], посвященной абиссальным кораллам и их связи с океанским конвейером, сообщается, что на глубинах более 4000 м в Тихом океане живут виды только трех родов кораллов: *Fungiacyathus marenzelleri* (Vaughan, 1906), *Leptopenus discus* Moseley, 1881, *Leptopenus*. solidus keller, 1972 и *Deltocyathus parvulus* Keller, 1982 (табл. 5).

Наиболее многочисленные находки первых двух видов отмечены в Курило-Камчатском и Алеутском желобах и вдоль западного побережья северной Америки. Внутри двух замкнутых петель глобального конвейера эти виды не зафиксированы [7]. Третий вид не выходит за пределы Тихого океана [4]. Распространение видов *F. marenzelleri* и *L. discus* в Мировом океане показано на картах (рис. 6, 7).

Итак, большая часть видов приходится на глубины 1000–2000 м, существенно меньше видов на отрезках 2000–3000 м и 3000–4000 м (табл. 3, 4). Второй максимум численного, но не видового

Рис. 1. Распространение кораллов в диапазоне глубин 1000–2000 м по нашим данным с номерами станций, линиями показана схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

обилия приходится на глубину от 4000 до 5000 метров, где обитают лишь 3 вида трех родов кораллов (рис. 6, 7). Судя по карте глубинной циркуляции, на этом батиметрическом отрезке глубинная часть океанского конвейера не является препятствием для распространения этих абиссальных видов кораллов, которые встречаются по всей территории морского дна, не отдавая явного предпочтения западной или восточной акваториями Тихого океана.

На всех прочих глубинах мы имеем дело с четко выраженной меридиональной асимметрией в распространении кораллов в Тихом океане.

№№ станций	Глубина, м	Географические координаты	Название вида
1244	1640	31°42′ S 159°00′ E	Fungiacyathus.margaretae Cairns, Deltocyathus vaughani Yabe et Eguichi
1245	1210	30°25′ S 181°48′ E	Stephanocyathus coronatus (Pourtales), Deltocyathus vaughani Yabe et Eguichi, Conotrochus brunneus Moseley, Fungiacyatus marenzelleri Vaughan
1275	1620	46°16′ S 173°10′ E	Flabellum impensum Squires
1276	1400	48°25′ S 171°42′ E	Flabellum knoxi Ralph. et Squires
1281	1026	53°22′ S 167°07′ E	Fl. knoxi Ralph. et Squires
1746	1350	4°54' N 154°59' E	Madrepora oculata Linnaeus
2078	1700	44°09' N 148°38' E	Javania borealis Cairns, Crispatotrochu rubescens Moseley, Caryophyllia. alaskensis Vaughan
3353	1680	53°53' N 169°15' E	<i>Javania cailleti</i> (Duchassaing et Michelotti) <i>Caryophyllia alaskensis</i> Vaughan
3358	1977	31°02' N 129°20' E	Fungiacyathus. stephanus (Alcock), Letepsammia formosissima Moseleyi, Anthemiphyllia dentata (Alcock)
4179	1258	12°40' N 124°59' E	Caryophyllia. alaskensis Vaughan
5638	1845	44°36′ N 149°07′ E	Caryophyllia. ambrosia Alcock
6002-12	1940	20°41′ N 170°52′ W	Deltocyathus parvulus Keller
6127	1340	55°22' N 134°50' W	Caryophyllia ambrosia Alcock
6325	1950	25°08' N 176°10' E	Deltocyathus. magnificus Moseley Deltocyathus murrayi Gardiner et Waugh
6355	1630	18°32′ N 177°59′ W	Flabellum trapezoidum Keller
6363	1350	21°10′ N 163°16′ W	Flabellum marcus Keller
6367	1420	23°32′ N 157°23′ W	Caryophyllya pacifica Keller, Vaughanella.oreophila Keller
355	1200	49°10′ S 166°23′ E	Flabellum apertum Moseley,
377	900	67°21' S 179°53' E	Gardineria antarctica Gardiner.
1047	1490	12°54' N 156°59' E	Flabellum. marcus Keller
1054	1424	12°52' N 156°54' E	Flabellum marcus Keller Fungiacyathus pliciseptus Keller
1070	1860	14°09' N 156°31' E	Peponocyatus australiensis (Duncan)
1074	1930	02°12′ N 148°03′ E	Enalopsammia rostrata (Pourtales)
1082	1150	12°00' N 145°05' E	Madrepora oculata Linnaeus
Ly28	1642	54°00' N 146°17' E	Caryophyllya japonica Marenzeller
58	970	15°23' N 143°07' E	Madrepora oculata Linnaeus
1859	1058	21°40' S 82°01' W	Desmophyllum dianthus (Esper)

Таблица 2. Виды склерактиний, поднятых судами Института океанологии с глубины 1000-2000 м

ОБСУЖДЕНИЕ

В одной из предыдущих статей [5] мы предположили, что глобальный океанский конвейер влияет на распространение глубоководных кораллов двумя способами. Глубоководная его часть может служить либо барьером для расселения придонной группы их личинок, либо может разносить те личинки, которые способны подниматься над местом нереста вдоль траектории движения конвейера [5, 7]. Судя по распространению как всей верхнебатиальной фауны кораллов, так и отдельных видов в Тихом океане, глубинная часть конвейера служила непреодолимым барьером для ее проникновения из западной в восточную Пацифику (рис. 1, 2, 4). Любопытно, что та петля, которая ограничена только глубоководными частями конвейера, характеризуется полным отсутствием кораллов на всех глубинах, кроме абиссальных (рис. 1–6). Кораллы, распространенные в северной, прилегающей к азиатскому материку части, возможно использовали поверхностную часть конвейера для проникновения к берегам Аляски (рис. 1). Но южнее 60° с.ш. они не

Рис. 2. Распространение кораллов в диапазоне глубин 1000–2000 м. Кружком обозначены станции нашей коллекции, квадратами – станции из литературных источников, линиями – схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

смогли распространиться: может быть, не успели по времени, если предположить их молодой возраст, или им помешал калифорнийский апвеллинг. Единичные находки близ побережья южной Америки могут быть связаны с проникновением кораллов из Атлантики через существовавший еще в раннем плиоцене Панамский канал [19].

Исходной для ныне живущих кораллов была мелководная фауна океана Тетис. С распадом Тетиса и закрытием в середине миоцена прохода

Таблица 3. Виды склерактиний, обнаруженные на глубинах 2000-3000 м по нашим и литературным данным

Глубина, м	Географические координаты	Название вида
3000	40°30′ N 125°45′ W	Fungiacyathus marenzelleri Vaughan
2542	13°29′ S 147°12′ E	Fungiacyathus stephanus (Alcock)
2000	11°46′ S 178°27′ W	Stephanocyathus nobilis (Moseley)
2500	09°13' N 118°51' E	Stephanocyathus imperialis Cairns
2450	29°42′ S 159°48′ E	Caryophyllia scobinosa Alcock
2309	1°55′ S 127°42′ E	Caryophyllia diomedeae Marenzeller
2603	31°55′ N 133°23′ E	Caryophyllia cornulum (Cairns)
2350	0°13′ S 118°12′ E	Caryophyllia cornulum (Cairns)
—	32°14′ N 134° E	
2430	04°49′ S 154°54′ E	Caryophyllia ambrosia Alcock
2970	00°56′ S 142°25′ E	
2515	36°00' S 179°12' E	Crispatotrochus curvatus Cairns
2000	37°29' S 172°00' E	Paracyathus conceptus Gardiner
2161	1°19' S 118°40' E	Madrepora oculata Linnaeus
2310	21°10' N 163°13' E	Deltocyathus lens Alcock
2570	4°38' N 119°49' E	Flabellum conicus Moseley
2755	33°56′ S 127°55′ E	Flabellum impensum Squires
2022	9°13′ N 118°51′ E	Enallopsammia rostrata (Pourtales)

Таблица 4. Виды склерактиний, обнаруженные на глубинах 3000-4000 м по нашим и литературным данным

Глубина, м	Географические координаты	Название вида
3676	31°19′ N 119°39′ W	Fungiacyatus marenzelleri Vaughan
3700	32°25′ N 120°40′ W	Fungiacyatus marenzelleri Vaughan
3880	34°24' N 128°12' E	Fungiacyatus marenzelleri Vaughan
3000	40°30′ N 125°45′ W	Fungiacyatus marenzelleri Vaughan
3820	80°07′ S 104°10′ W	Fungiacyatus marenzelleri Vaughan
	11°30' S 152°10' E	Fungiacyatus marenzelleri Vaughan
3743	14°11' S 140°05' E	Fungiacyatus marenzelleri Vaughan
	44°24' N 149°10' E	Fungiacyathus paliferus (Alcock)
3840	7°10′ S 85°50′ W	Fungiacyathus pseudostephana Keller
3949	33°31′ S 74°43′ W	Leptopenus discus Moseley
3743	46°22′ N 153°03′ E	Leptopenus solidus Keller
3070	11°30' S 152°10' E	Deltocyathus magnificus Moseley
4000	28°53' N 137°21' E	Deltocyathus. parvulus Keller
3949	124° S 80°47′ W	Deltocyathus parvulus Keller
3980	12°54′ N 160°44′ E	Deltocyathus parvulus Keller
3743	46°22′ N 153°03′ E	Flabellum marcus Keller

между Индийским океаном и Средиземным морем началось распространение видов в прилегающие акватории. При этом в Тихом океане преобладающая часть склерактиниевых кораллов приходится на западную Пацифику.

Меридиональная асимметрия в распределении многих групп донных беспозвоночных в низ-

ких широтах — широко распространенное явление, отражающее меридиональную продукционную асимметрию. Она выражается в возрастании на западе океанов роли таких таксонов батиальных беспозвоночных, как стебельчатые лилии, брахиоподы, и глубоководные кораллы и связывается с системой разнонаправленных кругово-

Рис. 3. Распространение кораллов в диапазоне глубин 2000–3000 м. Кружком обозначены станции нашей коллекции, квадратами – станции из литературных источников, линиями – схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

ротов поверхностных вод у восточных и западных побережий одного и того же океана, как предполагается, возникающих в результате вращения Земли и действия сил Кориолиса [4]. Однако барьер в виде подводной части глобального конвейера в абиссали не работает, так как мощное течение по всей видимости не доходит до самого дна океана и не является препятствием в расселении личинок двух самых глубоководных видов.

При историческом анализе условий формирования фауны обычно оценивался уровень генети-

Рис. 4. Распространение кораллов в диапазоне глубин 3000–4000 м по нашим данным с номерами станций, линиями показана схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

ческих связей между отдельными географическими комплексами таксонов низких рангов, а не собственно возраст фауны и отдельных составляющих ее зональных или биогеографических комплексов. Важнее получить хотя бы спорные, но подкрепленные данными по истории формирования Океана представления об абсолютном возрасте той или иной фауны. Мы попытались выяснить возраст видов кораллов, населяющих разные выделенные нами батиметрические горизонты,

Рис. 5. Распространение кораллов в диапазоне глубин 3000–4000 м. Кружком обозначены станции нашей коллекции, квадратами – станции из литературных источников, линиями – схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

что может пролить дополнительный свет на историю развития Океана.

Не строящие рифов глубоководные кораллы, лишенные зооксантелл, обитающие в широком диапазоне глубин, от литорали до абиссали, появ-

ляются лишь в средней юре. К концу мела они уже приобрели современный облик. Возраст появления большинства наиболее распространенных в океане родов склерактиний варьирует от средней юры до плейстоцена, но большая их часть появилась в палеогене [25, 27] (табл. 6).

Распространение вида Fungiacyathus marenzelleri					
глубина, м	географические координаты	глубина, м	географические координаты	глубина, м	географические координаты
5400	54°48' S 159°10' E	4395	49°49′ S 148°24′ E	5540	38°25′ S 132°28′ E
5140	42°32' N 150°41' E	5070	46°07' N 155°16' E	5060	44°42′ N 153°49′ E
5780	39°02' N 151°50' E	6125	33°18' N 149°45' E	5450	38°02′ N 146°33′ E
6328	53°37′ S 159°40′ E	4655	53°37′ S 159°40′ E	4477	40°22' N 135°49' W
4325	05°01' S 139°50' W	4200	01°22' S 162°31' E	5020	46°10′ N 153°07′ E
5210	45°18' N 153°07' E	5120	45°14' N 155°15' E	5070	45°26' N 154°12' E
5220	45°26' N 154°12' E	6117	44°07' N 149°34' E	4720	44°17′ N 149°33′ E
5740	53°58' N 157°37' W	4740	57°00' N 148°18' W	4620	53°35′ N 163°23′ W
4820	51°40' N 163° W	4919	35°33' S 159°05' E	4961	36°55′ S 159°31′ E
Распространение вида Leptopenus discus					
4655	46°56' N 143°53' W	5000	52°13′ N 163°43′ W	4820	51°40′ N 163° W
Распространение вида Deltocyathus parvulus					
5080	25°27' N 143°22' E	4600	5°00' S 135°31' E	4700	21°01′ S 161°03′ W
4680	20°06' N 169°07' W	4900	10°58' N 135°38' E		

Таблица 5. Виды склерактиний на глубине свыше 4000 м в Тихом океане поднятые судами института океанологии

Таблица 6. Возраст родов, к которым принадлежат исследованные виды

Nº	Название рода	Глубина, м	Возраст
1	Fungiacyathus	69-6328	Эоцен-ныне
2	Leptopenus	682-5000	Современный
3	Stephanophyllia	15-1137	Эоцен, миоцен-ныне
4	Madrepora	15-2700	Эоцен, миоцен-ныне
5	Caryophyllia	0-3200	Верхняя юра-ныне
6	Trochocyathus	32-1675	Средняя юра-ныне
7	Stephanocyathus	141-2210	Палеоген: (палеоцен)-ныне
8	Deltocyathus	13-5080	Палеоген (эоцен)-ныне
9	Lophelia	60-2170	Палеоген, неоген (олигоцен?, миоцен)-ныне
10	Conotrochus	110-1089	Палеоген (эоцен)-ныне
11	Crispatotrochus	82-2329	Средний мел-палеоген (эоцен)-ныне
12	Desmophyllum	35-2460	Средний мел-ныне
13	Solenosmilia	220-2165	Современный
14	Paracyathus	0-1472	Палеоген (эоцен)-ныне
15	Peponocyathus	10-1097	Палеоген (олигоцен)-ныне
16	Flabellum	22-2260	Верхний мел-ныне
17	Vaughanella	100-2000	Современный
18	Javania	32-2165	Палеоген (эоцен)-ныне
19	Gardineria	2-728	Современный
20	Enalopsammia	110-2165	Неоген (миоцен)-ныне

Однако возраст появления большей части видов, населяющих современный океан, остается неясным. Это происходит потому, что палеонтология имеет дело исключительно с мелководными склерактиниями, обитающими на глубинах существенно менее 1000 м. Древних одиночных полипов в континентальных разрезах находят в осадках глубин, лежащих не намного глубже, чем современные рифовые отложения [9]. Глубоководные же отложения с кораллами на суше практически не встречаются. При бурении океанского дна в глубоководных зонах океанов склеракти-

Рис. 6. Распространение кораллов в диапазоне глубин 4000–5000 и более метров по нашим данным с номерами станций, линиями показана схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными – глубинная) [8].

нии, как правило, не обнаруживаются, поэтому определить возраст появления видов глубоководных кораллов обычными стратиграфическими методами практически невозможно. Для оценки возникновения ряда видов нами сделана первая попытка подойти к этой проблеме не традиционным биостратиграфическим методом, а палеоэкологическим путем. Для этого использовались данные о температуре вод океана в геологическом прошлом и установленные нами температурные

Рис. 7. Распространение *Fungiacyathus marenzelleri* (Vaughan, 1906) — обозначен кружком и *Leptopenus discus* (Moseley, 1881) — обозначен звездочкой [7] в диапазоне глубин 4000—5000 и более метров, линиями показана схема глобального океанского конвейера согласно картам Кошлякова М.Н. (светлыми линиями обозначена поверхностная компонента циркуляции, темными — глубинная) [8].

диапазоны 45 видов кораллов, большинство которых принадлежит таким древнейшим родам как *Caryophyllia* (с верхней юры) и *Flabellum* (с верхнего мела), а также возникшего в палеогене рода *Javania* и современного рода *Gardineria* на фоне разнообразных видов с космополитическим распространением (табл. 6) [6]. Этот метод мы применили здесь в надежде выяснить возраст наиболее распространенных из имеющихся в нашей коллекции тихоокеанских кораллов. Виды были распределены по четырем градациям: наиболее холодноводная (A), умеренно холодноводная (Б), умеренная (B) и тепловодная (Г). По нашим расчетам виды градации A возникли не ранее позднего эоцена — начала олигоцена. Виды градации **Б** образовались в середине — конце эоцена. Виды градации **В** произошли в палеоцене и ранее. Время возникновения видов градации Γ — низы палеоцена, возможно мел [6].

Если наши выводы о возрасте верны, оказывается, что наиболее древними являются виды, обнаруженные нами на отрезке глубин 1000–2000 м.

Как было показано ранее [6], некоторые из этих видов могли появиться и в течение эоцена и даже в палеоцене, то есть 45—60 миллионов лет назад и даже раньше. Холодноводные же виды с узкими температурными границами, показывающие максимум обилия экземпляров на глубине от 4000 до 5000 метров, являются более молодыми и могли возникнуть не ранее начала олигоцена, то есть в пределах 30—31 миллиона лет назад или даже в миоцене, 11—12 млн лет назад [6]. По-видимому, это связано с другим исходным фактором происхождения фауны, не имеющим отношения к Тетису. Этим подтверждается наше первоначальное предположение об исключительной молодости глубоководной фауны [4].

Итак, на глубинах более 4000 м в Тихом океане живут только 3 вида трех родов кораллов. Это *Fungiacyathus marenzelleri* (Vaughan, 1906), *Leptopenus discus* Moseley, 1881 и *Deltocyathus parvulus* N. Keller, 1982 (табл. 5).

Наши исследования последних лет, касающиеся адаптивной морфологии абиссальных склерактиний показали, что эти виды представляют собой как бы живую модель того, каким мог бы быть скелет коралла на ранних стадиях его формирования. Особенно ярко это выражено у видов рода Leptopenus: тонкий и ажурный скелет является как бы корочкой, выделенной подошвой актинии, а центральная колонна состоит из тонких игольчатых шиповидных элементов. Эти обстоятельства в сочетании с результатами независимых экспериментов Саммарко и Ричмонда [4] привели нас к выводу, что предковыми формами склерактиний вероятнее всего были бесскелетные организмы, относящиеся либо к самостоятельной филогенетической линии, либо, что более вероятно, к линии, происшедшей в результате утраты скелета одной из групп ругоз – их палеозойских аналогов. Потеря или частичная утрата скелета в экстремальных ситуациях, неоднократно случавшихся в постпалеозойской истории Земли, могла происходить у кораллов неоднократно [4]. Неблагоприятные обстоятельства они вероятнее всего переживали в рефугиях батиали. При изменении экологических условий на благоприятные склерактинии могли подняться на верхние участки континентального склона, что сопровождалось вспышками видообразования.

Исходя из видового и количественного обилия коралловой фауны многие исследователи считали Индо-Малайский архипелаг основным центром происхождения не только мелководной, но также и глубоководной фауны. В частности, на примере кораллов, населяющих эту акваторию, Кун и Сквайр разработали схему исторического развития семейства *Micrabaciidae*. Они считают, что постепенное проникновение этого семейства в глубины началось в палеоцене в Индо-Малай-

ОКЕАНОЛОГИЯ том 62 № 6 2022

ском районе Тихого океана и сопровождалось редукцией скелета и неотеническим развитием его глубоководных видов. Кун приводит цепь генетически близких родов этого семейства, последовательно завоевывающих все большие глубины: Discopsammia – Stephanopsammia – Stephanophyllia – Letepsammia – Leptopenus [4]. Все современные роды, кроме Letepsammia и Leptopenus обитают на глубинах не более 800 м. Если это так, то в филогенетической ветви, выстроенной Куном, с той же степенью вероятности можно было бы вести линию семейства в обратном порядке, начиная от рода *Leptopenus*, если допустить, что этот примитивный род является родоначальником семейства Micrabaciidae, пережившим в убежищах на глубинах океана неблагоприятные периоды. Это один из примеров, показывающих, что рассуждения о предковых формах современных глубоководных кораллов в большинстве случаев имеют чисто умозрительный характер. Поэтому в отношении центров формирования глубоководной фауны мы склонны присоединиться к мнению, что их вообще могло не существовать, и процесс завоевания больших глубин океана мог начаться в любой момент его постмезозойской истории, так как каждому виду свойственно стремление расширить свой ареал.

Еще одним подтверждением молодости абиссальной фауны коралловых полипов служит удивительное совпадение особенностей распределения мелководных и батиальных видов. Конечно, все изложенное не может рассматриваться как прямое доказательство молодости абиссальных видов кораллов. Как мы уже писали, современные палеонтологические свидетельства не могут ни опровергнуть, ни подтвердить высказанные нами предположения. В многочисленных публикациях, посвященным находкам ископаемых кораллов, обычно лишь отмечается принадлежность кораллов к тем или иным семействам ныне процветающих полипов и их плиоцен—плейстоценовое происхождение.

Итак, два из населяющих абиссаль видов (F. marenzelleri и L. discus), по нашему мнению, молодые, возникшие в глубинных слоях океана от бесскелетных предков, и в дальнейшем распространившиеся в более высокие горизонты. Третий вид, Deltocyathus parvulus, произошел от мелководных предков и спустился в абиссаль в результате перехода к неотеническому развитию. Об этом подробно рассказано в нашей предыдущей публикации [4]. Таким образом, если наши определения возраста видов склерактиний верны, приходится признать, что существующая в настоящее время фауна абиссальных коралловых полипов, представляет собой молодое, плейстоцен – голоценовое образование. Все это еще раз подтверждает правомочность нашего предположения о молодости глубоководной фауны.

выводы

Анализ карт, построенных на основании авторских и литературных данных о сообществах склерактиний в Тихом океане, показал, что, судя по распространению батиальной фауны кораллов в Тихом океане, глубинная часть конвейера служила непреодолимым барьером для ее проникновения из западной в восточную Пацифику. При этом кораллы четко предпочитают западное полушарие восточному, что свидетельствует о существовании меридиональной асимметрия в их распределении и связано с влиянием глобального океанского конвейера и с историей развития океана. Однако в абиссали распределение кораллов иное и не подчиняется такому правилу.

Предположительный возраст видов, населяющих выделенные батиметрические горизонты, заставляет признать, что существующая в настоящее время фауна абиссальных коралловых полипов представляет собой молодое, плейстоцен голоценовое образование.

Это рассматривается в качестве дополнительного аргумента в пользу ранее предложенной конструкции происхождения глубоководных склерактиний от мягкотелых предков.

Источники финансирования. Исследование выполнено в рамках государственного задания: тема № 0128-2021-0008.

СПИСОК ЛИТЕРАТУРЫ

- Келлер Н.Б. Одиночные мадрепоровые кораллы (Madreporaria). В кн.: Бентос подводной горы Маркус-Неккер и смежных районов Тихого океана. М.: ИО АН СССР, 1981. С. 28–39.
- Келлер Н.Б. Склерактиниевые беззооксантеллятные кораллы подводных гор Наска и Сала и Гомес. В кн.: Бентос высокоширотных районов. М.: ВНИРО, 1998. С. 89–93.
- 3. *Келлер Н.Б.* Пространственное распределение видов мадрепоровых кораллов, не имеющих зооксантелл (*Cnidaria*, *Anthozoa*) // Океанология. 1998. Т. 38. № 2. С. 227–232.
- 4. *Келлер Н.Б.* Глубоководные склерактиниевые кораллы. М: Крассанд, 2012. 384 с.
- 5. *Келлер Н.Б., Оськина Н.С., Савилова Т.А.* Распространение глубоководных склерактиниевых кораллов в Атлантическом океане // Океанология. 2017. Т 57. № 2. С. 331–338.
- Келлер Н.Б., Оськина Н.С., Николаев С.Д. Новый подход к определению возраста глубоководных видов склерактиний на основании температурных диапазонов их обитания // Доклады РАН. 2009. Т. 425. № 2. С. 218–222.
- 7. Келлер Н.Б., Оськина Н.С., Савилова Т.А. Существут ли связь абиссальных склерактиниевых коралов с океанским конвейером // Океанология. 2017. Т. 57. № 4. С. 611-617.

- Кошляков М.Н., Тараканов Р.Ю. Перенос воды через субантарктический фронт и глобальный океанский конвейер // Океанология. 2011. Т. 51. № 5. С. 743–767.
- Alloiteau J. Contribution a la systematique des Madreporaires fossils. Paris: Centre national de la recherche scientifique, 1957. 462 p.
- Cairns S.D. New records of ahermatypic corals (Scleractinia) from the Hawaiian and Line Islands // Occas. Papers of the Bernice Pauahi Bishop Mus. 1984. V. 25 (10). 30 p.
- Cairns S.D. A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent waters. Part 1: Fungiacyathidae, Micrabaciidae, Turbinoliinae, Guyniidae, and Flabellida // Smithsonian Contrib. Zool. 1989. № 486. 136 p.
- 12. *Cairns S.D. Scleractinia* of the temperate North Pacific // Smithsonian Contrib. Zool. 1994. V. 557. 150 p.
- Cairns S.D. The marine fauna of New Zealand: Scleractinia (*Cnidaria: Anthozoa*) // New Zealand Oceanograph. Inst. Mem. 1995. V. 103. 144 p.
- Cairns S.D. Cnidaria Anthozoa: Deep-water azooxanthellate Scleractinia from Vanuatu, Wallis and Futuna Islands // A.Crosnier (ed.). Resultats des Camp. Musorstom. V. 20. Mem. Mus. Histoire Naturelle. 1999. № 180. P. 31–167.
- Cairns S.D. The Azooxanthellate Scleractinia (Coelenterata Anthozoa) of Australia // Records of the Australian Museum. 2004. V. 56. P. 259–329.
- Cairns S.D., Parker S.A. Review of the recent Scleractinia of South Australia, Victoria, and Tasmania // Records of the south Australian Museum. Monograph Series 3. 1992. 82 p.
- Cairns S.D., Haussermannt V, Forssterra G. A review of the Scleractinia (Cnidaria: Anthozoa) of Chile, with the description of two new species // Zootaxa. 2005. V. 1018. P. 15–46.
- Cairns S.D., Zibrowius H. Cnidaria Anthozoa: Azooxanthellate Scleractinia from the Philippine and Indonesian Regions. In: A. Crosnier & P.Bouchet (eds.). / Result. des Camp. Musorstom. V.16. Mem. Mus. Nat. Hist. Nat. 1997. V. 172. 214 p.
- Coates A.G., Stallard R.F. How old is the Isthmus of-Panama? // Bull. Mar. Sci. 2013. V. 89. P. 801–813. https://doi.org/10.5343/bms.2012.1076
- 20. *Gardiner J.S., Waugh P.* The flabellid and turbinolid corals // Sci. Rep. John Murray Expedition (1933–1934). 1938. V. 5. № 7. P. 167–202.
- Gardiner J.S., Waugh P. Madreporaria excluding Flabellidae and Turbinolidae // Sci. Rep. John Murray Expedition (1933–1934). 1939. V. 6(5). P. 225–242.
- 22. *Marenzeller E von*. Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U.S. Fish Commission steamer "Albatross", during 1891, Lieut. Commander Z. L. Tanner, U.S.N., Commanding. XXXIII. Stein- und Hydro-korallen // Bulle-

tin of the Museum of Comparative Zoology at Harvard College. 1904. V. 43 (2)/ P. 75–87.

- Moseley H.N. On the deep-sea Madreporaria // Voyage H. M. S. "Challenger" Repts. Scient. Results. Zool. London. 1881. V. 2. Part. 7. P. 127–208.
- 24. Vaughan T.W. Reports on the scientific results of the expedition to the eastern tropical Pacific by the U.S. Fish commission steamer Albatross from October, 1904 to march, 1905. Part 6: Madreporaria // Bull. of the Museum of Comparative zoology. 1906. V. 50. № 3. P. 61–72.
- Vaughan T.W. Recent *Madreporaria* of the Hawaiian Islands and Laysan // Bull. U.S. Nat. Mus. 1907. № 59. 427 p.

- 26. Vaughan T.W., Wells J.W. Revision of the suborders, families and genera of the Scleractinia // Geol. Soc. Amer. Spec. Pap. 1943. V. 44. 363 p.
- 27. Wells J.W. Notes on Indo-Pacific Scleractinian corals. Part. 10. Late Pleistocene ahermatypic corals from Vanuatu // Pacific Science. 1984. V. 38. № 3. P. 205–219.
- Wells J.W. Scleractinia // In Treatise on invertebrate paleontology. 1956. Ed. R. C. Moore. F. Coelenterata. Univ. Kansas Press. P. 328–444.
- Zibrowius H. Les scléractiniaires du miocène au pléistocene de Sicile et de Calabre de Giuseppe Seguenza (1864, 1880) (Cnidaria, Anthozoa) // Academia Peloritana dei Pericolanti Classe 1 di Scienze Fis. Mat., Nat. 1991. V. LXV11 (1989). Supplemento N 1 (1). 135 p.

Distribution of Scleractinian Corals Inhabiting Depths over 1000 m in the Pacific Ocean

N. B. Keller^{a, #}, N. S. Oskina^{a, ##}, D. M. Olshanetskiy^{b, ###}, Y. A. Zarayskaya^{b, ####}

^aShirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia ^bGeological Institute, Russian Academy of Sciences, Moscow, Russia [#]e-mail: keller@ocean.ru ^{##}e-mail: nsoskina@mail.ru ^{###}e-mail: mitia@list.ru ^{####}e-mail: yulya.zarayskaya@gmail.com

The distribution analysis of scleractinian coral species in the Pacific Ocean using Shirshov Institute of Oceanology and literature data was carried out with regards to the Global Oceanic Conveyor. The idea was to evaluate if the Conveyor acts as a natural barrier for hydranth larva. Series of maps of scleractinian coral distribution in depths intervals 1000-2000 m, 2000-3000 m, 3000-4000 m, and 4000-5000 m were created in order to study specifics of their distribution in the Pacific Ocean. The major number of stations (up to 300) with the corals were registered in depth range 1000-2000 m. Few stations are located in deeper regions. The second maximum of stations (more than 60) is located in abyss depths deeper than 4000 m. However, only three species are present in this depth range. Geographical distribution of scleractinian corals shows longitudinal asymmetry. The majority of the stations is located in the western part of the Pacific. We are suggesting that this distribution is associated with the global oceanic conveyor belt and with the evolution of the ocean. The paleogeographic evaluation of the possible time period when the species first appeared shows that relatively shallow water (1000-2000 m) corral associations are older then the abyssal scleractinian fauna. That adds to our *F. marenzelleri* and *L. discus* evolution suggestions made in [4].

Keywords: scleractinian coral, Pacific Ocean, Global Oceanic Conveyor